ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 55665

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
Сложность: 4
Классы: 8,9

На плоскости даны прямая l и точка M. Пусть M1 — точка, симметричная точке M относительно прямой l. При параллельном переносе прямой l в перпендикулярном ей направлении на расстояние h прямая l перешла в прямую l1. Докажите, что образ M2 точки M при симметрии относительно прямой l1 получается из точки M1 параллельным переносом в том же направлении на расстояние 2h.

Прислать комментарий     Решение


Задача 55668

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
Сложность: 4
Классы: 8,9

Докажите, что композиция параллельного переноса в направлении, перпендикулярном некоторой прямой, и симметрии относительно этой прямой есть осевая симметрия.

Прислать комментарий     Решение


Задача 55678

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 4
Классы: 8,9

Существует ли: а) ограниченная, б) неограниченная фигура на плоскости, имеющая среди своих осей симметрии две параллельные несовпадающие прямые?

Прислать комментарий     Решение


Задача 55667

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
Сложность: 4
Классы: 8,9

Докажите, что композиция трёх симметрий относительно параллельных прямых l1, l2 и l3 есть осевая симметрия.

Прислать комментарий     Решение


Задача 55666

Темы:   [ Композиции симметрий ]
[ Параллельный перенос (прочее) ]
Сложность: 4+
Классы: 8,9

Докажите, что композиция симметрий относительно n параллельных прямых l1, l2, ..., ln есть:

а) параллельный перенос, если n чётно;

б) осевая симметрия, если n нечётно.

Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .