ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 34834
Темы:    [ Принцип Дирихле (углы и длины) ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9
В корзину
Прислать комментарий

Условие

Дорога протяженностью 1 км полностью освещена фонарями, причем каждый фонарь освещает отрезок дороги длиной 1 м. Какое наибольшее количество фонарей может быть на дороге, если известно, что после выключения любого фонаря дорога будет освещена уже не полностью?

Подсказка

Если отрезки, освещенные n-м и (n+2)-м фонарями, пересекаются, то (n+1)-й фонарь можно выключить.

Решение

Занумеруем фонари натуральными числами в порядке следования вдоль дороги. Если отрезки, освещенные n-м и (n+2)-м фонарями, пересекаются, то (n+1)-й фонарь можно выключить. Следовательно, отрезки с различными нечетными номерами, не пересекаются. На отрезке длины 1000 м нельзя расположить больше 999 непересекающихся отрезков длины 1 м. Значит, фонарей не больше 1998. Расположим 1998 фонарей так, чтобы центры освещенных отрезков образовывали арифметическую прогрессию, первый член которой равен 0,5 м, а 1998-й равен 999,5 м. Между n-м и (n+2)-м отрезком остается зазор в 1/1997 м. Его освещает только (n+1)-й фонарь. Поэтому никакой фонарь нельзя выключить.

Ответ

1998.00

Источники и прецеденты использования

web-сайт
задача

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .