Страница:
<< 18 19 20 21 22 23 24 [Всего задач: 118]
|
|
Сложность: 6- Классы: 9,10,11
|
Внутри выпуклого стоугольника выбрано
k точек,
2
k 50
. Докажите, что можно отметить
2
k
вершин стоугольника так, чтобы все выбранные точки оказались внутри
2
k -угольника с отмеченными
вершинами.
|
|
Сложность: 6 Классы: 8,9,10
|
Даны натуральные числа
p<k<n . На бесконечной клетчатой плоскости отмечены
некоторые клетки так, что в любом прямоугольнике (
k+1)×
n (
n клеток
по горизонтали,
k+1
– по вертикали) отмечено ровно
p клеток. Докажите, что
существует прямоугольник
k×(
n+1) (где
n+1
клетка по горизонтали,
k – по
вертикали), в котором отмечено не менее
p+1
клетки.
|
|
Сложность: 6+ Классы: 8,9,10,11
|
За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой.
Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от
каждой страны, и никакие двое из одной группы не сидят за столом рядом.
Страница:
<< 18 19 20 21 22 23 24 [Всего задач: 118]