Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 177]
|
|
Сложность: 4- Классы: 8,9,10
|
В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.
|
|
Сложность: 4- Классы: 7,8,9
|
Существуют ли такие 14 натуральных чисел, что при увеличении каждого из них на 1 произведение всех чисел увеличится ровно в 2008 раз?
|
|
Сложность: 4- Классы: 8,9,10
|
Расстоянием между двумя клетками бесконечной шахматной доски назовём минимальное число ходов в пути короля между этими клетками. На доске отмечены три клетки, попарные расстояния между которыми равны 100. Сколько существует клеток, расстояния от которых до всех трёх отмеченных равны 50?
|
|
Сложность: 4- Классы: 10,11
|
В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей).
а) Одна запись стёрлась. Всегда ли можно однозначно восстановить
её по остальным?
б) Пусть стёрлись k записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем k
всегда можно однозначно восстановить стёршиеся записи?
|
|
Сложность: 4- Классы: 9,10
|
На доску выписаны 2011 чисел. Оказалось, что сумма каждых трёх выписанных чисел также является выписанным числом.
Какое наименьшее количество нулей может быть среди этих чисел?
Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 177]