ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Алексеев В.Б.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 [Всего задач: 7]      



Задача 111349

Темы:   [ Процессы и операции ]
[ Периодичность и непериодичность ]
[ Делимость чисел. Общие свойства ]
Сложность: 4
Классы: 9,10,11

Станок выпускает детали двух типов. На ленте его конвейера выложены в одну линию 75 деталей. Пока конвейер движется, на станке готовится деталь того типа, которого на ленте меньше. Каждую минуту очередная деталь падает с ленты, а подготовленная кладётся в её конец. Через некоторое число минут после включения конвейера может случиться так, что расположение деталей на ленте впервые повторит начальное. Найдите  а) наименьшее такое число,  б) все такие числа.

Прислать комментарий     Решение

Задача 73685

Темы:   [ Задачи с ограничениями ]
[ Целочисленные решетки ]
[ Индукция (прочее) ]
[ Объединение, пересечение и разность множеств ]
Сложность: 5
Классы: 10,11

P и Q – подмножества множества выражений вида  (a1, a2, ..., an),  где ai – натуральные числа, не превосходящие данного натурального числа k (таких выражений всего kn). Для каждого элемента  (p1, ..., pn)  множества P и каждого элемента  (q1, ..., qn)  множества Q существует хотя бы один такой номер m, что  pm = qm.  Докажите, что хотя бы одно из множеств P и Q состоит не более чем из kn–1 элементов для
  а)  k = 2  и любого натурального n;
  б)  n = 2  и любого натурального  k > 1;
  в) произвольного натурального n и произвольного натурального  k > 1.

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .