Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Алиханов Г.

Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В треугольнике $ABC$ проведены высоты $BB_1$, $CC_1$ и диаметр $AD$ описанной окружности. Прямые $BB_1$ и $DC_1$ пересекаются в точке $E$, а прямые $CC_1$ и $DB_1$ – в точке $F$. Докажите, что $\angle CAE=\angle BAF$.

Вниз   Решение


Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.

ВверхВниз   Решение


К описанной окружности треугольника $ABC$ проведены касательные в точках $B$ и $C$. Лучи $CC_1$, $BB_1$, где $B_1$ и $C_1$ – середины сторон $AC$ и $AB$, пересекают эти касательные в точках $K$ и $L$ соответственно. Докажите, что $\angle BAK=\angle CAL$.

ВверхВниз   Решение


Докажите неравенство     (a, b, c – положительные числа).

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 98394

Темы:   [ Алгебраические неравенства (прочее) ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 7,8,9

Докажите неравенство     (a, b, c – положительные числа).

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .