ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||
Версия для печати
Убрать все задачи Значение a подобрано так, что число корней первого из уравнений
4x – 4–x = 2 cos ax, 4x + 4–x = 2 cos ax + 4 равно 2007. В наборе из 17 внешне одинаковых монет две фальшивых, отличающихся от остальных по весу. Известно, что суммарный вес двух фальшивых монет вдвое больше веса настоящей. Всегда ли можно ли определить пару фальшивых монет, совершив пять взвешиваний на чашечных весах без гирь? (Определять, какая из фальшивых монет тяжелее, не требуется.) У входа в пещеру стоит барабан, на нём по кругу через равные промежутки расположены N одинаковых с виду бочонков. Внутри каждого бочонка лежит селёдка – либо головой вверх, либо головой вниз, но где как – не видно (бочонки закрыты). За один ход Али-Баба выбирает любой набор бочонков (от 1 до N штук) и переворачивает их все. После этого барабан приходит во вращение, а когда останавливается, Али-Баба не может определить, какие бочонки перевёрнуты. Пещера откроется, если во время вращения барабана все N селёдок будут расположены головами в одну сторону. При каких N Али-Баба сможет открыть пещеру? У Винтика и у Шпунтика есть по три палочки суммарной длины 1 метр у каждого. И Винтик, и Шпунтик могут сложить из трёх своих палочек треугольник. Ночью в их дом прокрался Незнайка, взял по одной палочке у Винтика и у Шпунтика и поменял их местами. Наутро оказалось, что Винтик не может сложить из своих палочек треугольник. Можно ли гарантировать, что Шпунтик из своих — сможет? а) В бесконечной последовательности бумажных прямоугольников площадь n-го прямоугольника равна n². Обязательно ли можно покрыть ими плоскость? Наложения допускаются. б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа N найдутся квадраты суммарной площади больше N? |
Страница: << 1 2 3 [Всего задач: 11]
а) В бесконечной последовательности бумажных прямоугольников площадь n-го прямоугольника равна n². Обязательно ли можно покрыть ими плоскость? Наложения допускаются. б) Дана бесконечная последовательность бумажных квадратов. Обязательно ли можно покрыть ими плоскость (наложения допускаются), если известно, что для любого числа N найдутся квадраты суммарной площади больше N?
Страница: << 1 2 3 [Всего задач: 11]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке