ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Макаров Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 108027

Темы:   [ Перегруппировка площадей ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Отношения линейных элементов подобных треугольников ]
Сложность: 4-
Классы: 8,9

Из точки M внутри треугольника опущены перпендикуляры на высоты. Оказалось, что отрезки высот от вершин до оснований этих перпендикуляров равны между собой. Докажите, что в этом случае они равны диаметру вписанной в треугольник окружности.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .