Страница: 1 [Всего задач: 2]
|
|
Сложность: 6 Классы: 9,10,11
|
Рассмотрим на клетчатой плоскости такие ломаные с началом в точке $(0,0)$ и вершинами в точках с целыми координатами, что каждое очередное звено идет по сторонам клеток либо вверх, либо вправо. Каждой такой ломаной соответствует
червяк — фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной. Докажите, что червяков, которых можно разбить на двуклеточные доминошки ровно $n>2$ различными способами, столько же, сколько натуральных чисел, меньших $n$ и взаимно простых с $n$.
(Червяки разные, если состоят из разных наборов клеток.)
|
|
Сложность: 6 Классы: 8,9,10,11
|
Рассмотрим на клетчатой плоскости такие ломаные с началом в точке (0, 0) и вершинами в целых точках, что каждое очередное звено идёт по сторонам клеток либо вверх, либо вправо.
Каждой такой ломаной соответствует
червяк – фигура, состоящая из клеток плоскости, имеющих хотя бы одну общую точку с этой ломаной.
Докажите, что червяков, которые можно разбить на двуклеточные доминошки ровно n > 2 различными способами, столько же, сколько натуральных чисел, меньших n и взаимно простых с n.
(Червяки разные, если состоят из разных наборов клеток.)
Страница: 1 [Всего задач: 2]