ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Захаров Д.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: 1 [Всего задач: 1]      



Задача 66731

Темы:   [ Процессы и операции ]
[ Геометрия на клетчатой бумаге ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Захаров Д.

Изначально на белой клетчатой плоскости конечное число клеток окрашено в чёрный цвет. На плоскости лежит бумажный клетчатый многоугольник $M$, в котором больше одной клетки. Его можно сдвигать, не поворачивая, в любом направлении на любое расстояние, но так, чтобы после сдвига он лежал "по клеткам". Если после очередного сдвига ровно одна клетка у $M$ лежит на белой клетке плоскости, эту белую клетку окрашивают в чёрный цвет и делают следующий сдвиг. Докажите, что существует такая белая клетка, которая никогда не будет окрашена в чёрный цвет, сколько бы раз мы ни сдвигали $M$ по описанным правилам.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .