ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Взяли пять натуральных чисел и для каждых двух записали их сумму.
Могло ли оказаться, что все 10 получившихся сумм оканчиваются разными цифрами?

Вниз   Решение


В школе изучают 2n предметов. Все ученики учатся на 4 и 5. Никакие два ученика не учатся одинаково, ни про каких двух нельзя сказать, что один из них учится лучше другого. Доказать, что число учеников в школе не больше   .
(Мы считаем, что ученик p учится лучше ученика q, если у p оценки по всем предметам не ниже, чем у q, а по некоторым предметам – выше.)

ВверхВниз   Решение


Докажите, что нетождественное проективное преобразование прямой имеет не более двух неподвижных точек.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 105126

Темы:   [ Процессы и операции ]
[ Полуинварианты ]
Сложность: 3+
Классы: 7,8,9

Шеренга новобранцев стояла лицом к сержанту. По команде "налево" некоторые повернулись налево, некоторые - направо, а остальные - кругом. Всегда ли сержант сможет встать в строй так, чтобы с обеих сторон от него оказалось поровну новобранцев, стоящих к нему лицом?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .