ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Преобразование Абеля. Для подсчета интегралов используется формула интегрирования по частям. Докажите следующие две формулы, которые являются дискретным аналогом интегрирования по частям и называются преобразованием Абеля:

$\displaystyle \sum\limits_{x=0}^{n-1}$f (x)g(x) = f (n)$\displaystyle \sum\limits_{x=0}^{n-1}$g(x) - $\displaystyle \sum\limits_{x=0}^{n-1}$($\displaystyle \Delta$f (x)$\displaystyle \sum\limits_{z=0}^{x}$g(z)),
$\displaystyle \sum\limits_{x=0}^{n-1}$f (x)$\displaystyle \Delta$g(x) = f (n)g(n) - f (0)g(0) - $\displaystyle \sum\limits_{x=0}^{n-1}$g(x + 1)$\displaystyle \Delta$f (x).


   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 30352  (#043)

Темы:   [ Сочетания и размещения ]
[ Классическая комбинаторика (прочее) ]
Сложность: 2+
Классы: 7,8,9

Сколько слов можно составить из пяти букв А и не более чем из трёх букв Б?

Прислать комментарий     Решение

Задача 60343  (#044)

Темы:   [ Правило произведения ]
[ Задачи с ограничениями ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?

Прислать комментарий     Решение

Задача 60344  (#45 (пункт б))

Темы:   [ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
Сложность: 3
Классы: 8,9

  а) Каких чисел больше среди целых чисел первой тысячи (включая и 1000): в записи которых есть единица, или остальных?

  б) Каких семизначных чисел больше: тех, в записи которых есть единица, или остальных?

Прислать комментарий     Решение

Задача 30355  (#046)

Темы:   [ Классическая комбинаторика (прочее) ]
[ Правило произведения ]
Сложность: 2
Классы: 7,8

Кубик бросают трижды. Среди всех возможных последовательностей результатов есть такие, в которых хотя бы один раз встречается шестёрка. Сколько их?

Прислать комментарий     Решение

Задача 30356  (#047)

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 7,8

Сколькими способами можно разбить 14 человек на пары?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .