|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Постройте треугольник ABC, если даны точки A, B и прямая, на которой лежит биссектриса угла C. Положительные числа a, b, c и d удовлетворяют условию 2(a + b + c + d) ≥ abcd. Докажите, что a² + b² + c² + d² ≥ abcd. |
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 559]
Может ли число, записываемое при помощи 100 нулей, 100 единиц и 100 двоек, быть точным квадратом?
Целые числа a и b таковы, что 56a = 65b. Докажите, что   a + b – составное число.
Решите в натуральных числах уравнение:
Решите в целых числах уравнение: x³ + x² + x – 3 = 0.
Докажите, что для любых натуральных чисел a и b верно равенство НОД(a, b)НОК(a, b) = ab.
Страница: << 23 24 25 26 27 28 29 >> [Всего задач: 559] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|