ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На гранях единичного куба отметили восемь точек, которые служат вершинами меньшего куба.
Найдите все значения, которые может принимать длина ребра этого куба.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 559]      



Задача 21980  (#011)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 3-
Классы: 6,7

10 школьников на олимпиаде решили 35 задач, причем известно, что среди них есть школьники, решившие ровно одну задачу, школьники, решившие ровно две задачи и школьники, решившие ровно три задачи. Докажите, что есть школьник, решивший не менее пяти задач.

Прислать комментарий     Решение


Задача 21981  (#012)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2
Классы: 6,7

Какое наибольшее число королей можно поставить на шахматной доске так, чтобы никакие два из них не били друг друга?

Прислать комментарий     Решение


Задача 21982  (#014)

Темы:   [ Принцип Дирихле (углы и длины) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 3-
Классы: 6,7,8

Докажите, что равносторонний треугольник нельзя покрыть двумя меньшими равносторонними треугольниками.

Прислать комментарий     Решение


Задача 21983  (#015)

Темы:   [ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Отрезок внутри треугольника меньше наибольшей стороны ]
Сложность: 3-
Классы: 7,8,9

В квадрат со стороной 1 метр бросили 51 точку. Докажите, что какие-то три из них можно накрыть квадратом со стороной 20 см.

Прислать комментарий     Решение


Задача 21984  (#016)

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2-
Классы: 6,7,8

Пятеро молодых рабочих получили на всех зарплату - 1500 рублей. Каждый из них хочет купить себе магнитофон ценой 320 рублей. Докажите, что кому-то из них придется подождать с покупкой до следующей зарплаты.

Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 559]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .