ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Пусть S1 и S2 — площади многоугольников M1 и M2. Докажите, что площадь S($ \lambda_{1}^{}$,$ \lambda_{2}^{}$) многоугольника $ \lambda_{1}^{}$M1 + $ \lambda_{2}^{}$M2 равна

$\displaystyle \lambda_{1}^{2}$S1 + 2$\displaystyle \lambda_{1}^{}$$\displaystyle \lambda_{2}^{}$S12 + $\displaystyle \lambda_{2}^{2}$S2,

где S12 зависит только от M1 и M2.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 78691

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 8

В Чили в феврале проходил международный турнир по футболу. Первое место с 8 очками занял местный клуб "Коло-Коло". На очко отстало московское "Динамо" и заняло второе место. Третье место с 4 очками занял бразильский клуб "Коринтианс". Четвёртое место занял югославский клуб "Црвена Звезда", также набравший 4 очка. Доказать, что по этим данным можно точно определить, сколько ещё команд участвовало в турнире и по сколько очков они набрали. (За победу присуждается 2 очка, за ничью – 1, за поражение – 0.)

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .