ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 78689  (#1)

Тема:   [ Теория игр (прочее) ]
Сложность: 2+
Классы: 8

Белая ладья преследует чёрного слона на доске 3×1969 клеток (они ходят по очереди по обычным правилам). Как должна играть ладья, чтобы взять слона? Первый ход делают белые.
Прислать комментарий     Решение


Задача 78690  (#2)

Тема:   [ Средняя линия трапеции ]
Сложность: 3+
Классы: 8,9

Старинный замок был обнесён треугольной стеной. Каждая сторона стены была поделена на три равные части, и в этих точках, а также в вершинах были построены башни. Всего вдоль стены было 9 башен: A, E, F, B, K, L, C, M, N. Со временем все стены и башни, кроме башен E, K, M, разрушились. Как по оставшимся башням определить, где находились башни A, B, C, если известно, что башни A, B, C стояли в вершинах?

Прислать комментарий     Решение

Задача 78691  (#3)

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 3+
Классы: 8

В Чили в феврале проходил международный турнир по футболу. Первое место с 8 очками занял местный клуб "Коло-Коло". На очко отстало московское "Динамо" и заняло второе место. Третье место с 4 очками занял бразильский клуб "Коринтианс". Четвёртое место занял югославский клуб "Црвена Звезда", также набравший 4 очка. Доказать, что по этим данным можно точно определить, сколько ещё команд участвовало в турнире и по сколько очков они набрали. (За победу присуждается 2 очка, за ничью – 1, за поражение – 0.)

Прислать комментарий     Решение

Задача 78692  (#4)

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости (прочее) ]
Сложность: 3+
Классы: 7,8,9

Доказать, что никакая степень числа 2 не оканчивается четырьмя одинаковыми цифрами.

Прислать комментарий     Решение

Задача 78693  (#5)

Темы:   [ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Правильные многоугольники ]
[ Сумма внутренних и внешних углов многоугольника ]
Сложность: 3
Классы: 8,9

Имеется 1000 деревянных правильных 100-угольников, прибитых к полу. Всю эту систему мы обтягиваем верёвкой. Натянутая верёвка будет ограничивать некоторый многоугольник. Доказать, что у него более 99 вершин.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .