ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Анджанс А.

В таблице m строк, n столбцов. Горизонтальным ходом называется такая перестановка элементов таблицы, при которой каждый элемент остаётся в той строке, в которой он был и до перестановки; аналогично определяется вертикальный ход ("строка" в предыдущем определении заменяется на "столбец"). Укажите такое k, что за k ходов (любых) можно получить любую перестановку элементов таблицы, но существует такая перестановка, которую нельзя получить за меньшее число ходов.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 57845

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Выпуклые многоугольники ]
[ Площадь. Одна фигура лежит внутри другой ]
Сложность: 5+
Классы: 8,9,10

Даны выпуклый n-угольник с попарно непараллельными сторонами и точка O внутри его. Докажите, что через точку O нельзя провести более n прямых, каждая из которых делит площадь n-угольника пополам.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .