ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Заданы N-вершинный ориентированный граф с двумя выделенными вершинами v1 и v2 и целое число C. Требуется:
1) определить, существует ли в заданном графе путь из вершины v1 в вершину v2, состоящий из C ребер (путь может иметь самопересечения как по вершинам, так и по ребрам);
2) найти минимум функции | X - C |, где X – количество ребер в некотором пути из v1 в v2 .

Входные данные

Первая строка входного файла содержит целое число N – количество вершин в графе (1 ≤ N ≤ 10). В следующих N строках расположена матрица N × N из нулей и единиц, элемент (i, j) которой равен единице, если в графе есть ребро из вершины i в вершину j, и нулю, если такого ребра нет. (Граф может содержать петли, т.е. ребра, идущие из вершины в саму себя). Элементы матрицы во входном файле записаны без разделительных пробелов. 

Наконец, строка N+2 содержит номера вершин v1 и v2 , а строка N+3 – десятичную запись числа C (1 &le C < 1050).

Выходные данные

В первую строку выходного файла выведите ответ на первый пункт задачи: «Yes», если путь длины C существует, и «No», если нет. Во вторую строку запишите ответ на второй пункт задачи. Если ни одного пути из v1 в v2 не существует, ваша программа должна вывести -1.

Пример входного файла

3
010
001
100
1 1
555555555555555555555555555555555

Пример выходного файла

Yes
0

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 85]      



Задача 60839  (#05.001)

Тема:   [ Периодические и непериодические дроби ]
Сложность: 2
Классы: 6,7,8

Представьте следующие рациональные числа в виде десятичных дробей:
  а) 1/7;   б) 2/7;   в) 1/14;   г) 1/17.

Прислать комментарий     Решение

Задача 60840  (#05.002)

Темы:   [ Периодические и непериодические дроби ]
[ Перебор случаев ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Найдите цифры a и b, для которых   = 0,bbbbb...

Прислать комментарий     Решение

Задача 60841  (#05.003)

Темы:   [ Периодические и непериодические дроби ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 9,10

Найдите период дроби  1/49 = 0,0204081632...
Прислать комментарий     Решение


Задача 60842  (#05.004)

 [Число Фейнмана]
Темы:   [ Периодические и непериодические дроби ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 9,10,11

Объясните поведение следующей десятичной дроби и найдите её период:  1/243 = 0,004115226337448...

Прислать комментарий     Решение

Задача 60843  (#05.005)

Темы:   [ Периодические и непериодические дроби ]
[ Обыкновенные дроби ]
[ Геометрическая прогрессия ]
Сложность: 3+
Классы: 7,8,9

Представьте следующие числа в виде обычных и в виде десятичных дробей:
  а)  0,(12) + 0,(122);   б)  0,(3)·0,(4);   в)  0,(9) – 0,(85).

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 85]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .