|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Два мага сражаются друг с другом. Вначале они оба парят над морем на высоте 100 метров. Маги по очереди применяют заклинания вида "уменьшить высоту парения над морем на a метров у себя и на b метров у соперника",
где a, b – действительные числа, 0 < a < b. Набор заклинаний у магов один и тот же, их можно использовать в любом порядке и неоднократно. Маг выигрывает дуэль, если после чьего-либо хода его высота над морем будет положительна, а у соперника – нет. Существует ли такой набор заклинаний, что второй маг может гарантированно выиграть (как бы ни действовал первый), если при этом число заклинаний в наборе |
Страница: << 1 2 [Всего задач: 7]
б) Даны две прямые l1 и l2 и точки P и Q, не лежащие на этих прямых. Циркулем и линейкой постройте на прямой l1 точку X и на прямой l2 точку Y так, что отрезок XY виден из точки P под данным углом
б) При помощи одной линейки впишите в данную окружность n-угольник, стороны которого проходят через данные n точек. в) При помощи циркуля и линейки впишите в данную окружность многоугольник, у которого некоторые стороны проходят через данные точки, некоторые другие параллельны данным прямым, а остальные имеют данные длины (о каждой стороне имеется информация одного из трех перечисленных типов).
Страница: << 1 2 [Всего задач: 7] |
||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|