|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||
|
Версия для печати
Убрать все задачи Клетчатая плоскость раскрашена в шахматном порядке в чёрный и белый цвета. Затем белые клетки снова раскрашены в красный и синий цвета так, чтобы клетки, соседние по углу, были разноцветными. Пусть l – прямая, не параллельная сторонам клеток. Для каждого отрезка I, параллельного l, посчитаем разность сумм длин его красных и синих участков. Докажите, что существует число C (зависящее только от прямой l) такое, что все полученные разности не превосходят C. |
Страница: 1 [Всего задач: 1]
Страница: 1 [Всего задач: 1] |
|||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|