Страница: 1
2 >> [Всего задач: 8]
Задача
32020
(#01)
|
|
Сложность: 2+ Классы: 7,8,9
|
Цены снижены на 20%. На сколько процентов больше можно купить товаров на ту же зарплату?
Задача
32021
(#02)
|
|
Сложность: 3- Классы: 6,7,8
|
Если класс из 30 человек рассадить в зале кинотеатра, то в любом случае хотя бы в одном ряду окажется не менее двух одноклассников. Если то же самое проделать с классом из 26 человек, то по крайней мере три ряда окажутся пустыми. Сколько рядов в зале?
Задача
32022
(#03)
|
|
Сложность: 3 Классы: 8,9,10
|
В одной из вершин а) октаэдра; б) куба сидит муха. Может ли она проползти по всем его рёбрам ровно по одному разу и возвратиться в исходную вершину?
Задача
32023
(#04)
|
|
Сложность: 3- Классы: 7,8,9
|
а) Дано шесть натуральных чисел. Все они различны и
дают в сумме 22. Найти эти числа и доказать, что других нет.
б) Тот же вопрос про 100 чисел, дающих в сумме 5051.
Задача
32024
(#05)
|
|
Сложность: 3+ Классы: 7,8,9
|
Для того, чтобы застеклить 15 окон различных размеров и
форм, заготовлено 15 стекол в точности по окнам (окна такие, что
в каждом окне должно быть одно стекло). Стекольщик, не зная, что
стекла подобраны, работает так: он подходит к очередному окну и
перебирает неиспользованные стекла до тех пор, пока не найдет
достаточно большое (то есть либо в точности подходящее, либо
такое, из которого можно вырезать подходящее), если же такого
стекла нет, то переходит к следующему окну, и так, пока не
обойдет все окна. Составлять стекло из нескольких частей нельзя.
Какое максимальное число окон может остаться незастекленными?
Страница: 1
2 >> [Всего задач: 8]