Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

На острове проживают 1234 жителя, каждый из которых либо рыцарь (который всегда говорит правду) либо лжец (который всегда лжёт). Однажды все жители острова разбились на пары, и каждый про своего соседа по паре сказал: "Он – рыцарь!", либо "Он – лжец!". Могло ли в итоге оказаться, что тех и других фраз произнесено поровну?

Вниз   Решение


Квадратный лист клетчатой бумаги разбит на меньшие квадраты отрезками, идущими по сторонам клеток.
Докажите, что сумма длин этих отрезков делится на 4. (Длина стороны клетки равна 1.)

ВверхВниз   Решение


Треугольник A1B1C1 получен из треугольника ABC поворотом на угол $ \alpha$ ($ \alpha$ < 180o) вокруг центра его описанной окружности. Докажите, что точки пересечения сторон AB и A1B1, BC и B1C1, CA и C1A1 (или их продолжений) являются вершинами треугольника, подобного треугольнику ABC.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 6]      



Задача 105112

Темы:   [ Шахматная раскраска ]
[ Шахматные доски и шахматные фигуры ]
[ Правило произведения ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10

На двух клетках шахматной доски стоят чёрная и белая фишки. За один ход можно передвинуть любую из них на соседнюю по вертикали или горизонтали клетку (две фишки не могут стоять на одной клетке). Могут ли в результате таких ходов встретиться все возможные варианты расположения этих двух фишек, причём ровно по одному разу?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .