Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Четырёхугольник $ABCD$ вписан в окружность с центром $O$. Пусть $P$ – точка пересечения его диагоналей, а точки $M$ и $N$ – середины сторон $AB$ и $CD$ соответственно. Окружность $OPM$ вторично пересекает отрезки $AP$ и $BP$ в точках $A_1$ и $B_1$ соответственно, а окружность $OPN$ вторично пересекает отрезки $CP$ и $DP$ в точках $C_1$ и $D_1$ соответственно. Докажите, что площади четырёхугольников $AA_1B_1B$ и $CC_1D_1D$ равны.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 88200

Тема:   [ Ребусы ]
Сложность: 2
Классы: 5,6,7

Директор завода, рассматривая список телефонных номеров и фамилий своих сотрудников, заметил определённую взаимосвязь между фамилиями и номерами телефонов. Вот некоторые фамилии и номера телефонов из списка:
Ачинский8111
Бутенко7216
Галич5425
Лапина6131
Мартьянов9143
Ромидзе7186
Какой номер телефона у сотрудника по фамилии Огнев?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .