ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Из отрезков, имеющих длины a, b и c, можно составить треугольник. Доказать, что из отрезков с длинами $ {\frac{1}{a+c}}$, $ {\frac{1}{b+c}}$, $ {\frac{1}{a+b}}$ также можно составить треугольник.

Вниз   Решение


Найдите наибольшее значение функции y = 9x-9tgx-7 на отрезке [0;] .

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 66630  (#5)

Темы:   [ Таблицы и турниры (прочее) ]
[ Комбинаторика (прочее) ]
Сложность: 3
Классы: 8,9,10,11

В школе провели турнир по настольному теннису. Турнир состоял из нескольких туров. В каждом туре каждый участник играл ровно в одном матче, а каждый матч судил один из не участвовавших в нем игроков.

После нескольких туров оказалось, что каждый участник сыграл по одному разу с каждым из остальных. Может ли оказаться, что все участники турнира судили одинаковое количество встреч?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .