ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 76497

Темы:   [ Разложение на множители ]
[ Методы решения задач с параметром ]
Сложность: 5
Классы: 9,10,11

Найти такие отличные от нуля неравные между собой целые числа a, b, c, чтобы выражение  x(xa)(xb)(xc) + 1  разлагалось в произведение двух многочленов (ненулевой степени) с целыми коэффициентами.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .