ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 1]      



Задача 98311

Темы:   [ Признаки делимости на 3 и 9 ]
[ Примеры и контрпримеры. Конструкции ]
[ Тождественные преобразования ]
[ Арифметика остатков (прочее) ]
Сложность: 4-
Классы: 8,9

Докажите, что существует бесконечно много таких троек чисел  n – 1,  n,  n + 1,  что:
  a) n представимо в виде суммы двух квадратов натуральных (целых положительных) чисел, а  n – 1  и  n + 1  – нет;
  б) каждое из трёх чисел представимо в виде суммы двух квадратов натуральных чисел.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .