|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Назовем тропинкой замкнутую траекторию на плоскости, состоящую из дуг окружностей и проходящую через каждую свою точку ровно один раз. Приведите пример тропинки и такой точки M на ней, что любая прямая, проходящая через M, делит тропинку пополам, то есть сумма длин всех кусков тропинки в одной полуплоскости равна сумме длин всех кусков тропинки в другой полуплоскости. а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин. Можно ли найти десять таких последовательных натуральных чисел, что сумма их квадратов равна сумме квадратов следующих за ними девяти последовательных натуральных чисел? Среди четырёх людей нет трёх с одинаковым именем, или с одинаковым отчеством, или с одинаковой фамилией, но у каждых двух совпадает или имя, или отчество, или фамилия. Может ли такое быть?
|
Страница: 1 2 3 >> [Всего задач: 14]
Несколько одинаковых по численности бригад сторожей спали одинаковое число ночей. Каждый сторож проспал больше ночей, чем сторожей в бригаде, но меньше, чем число бригад. Сколько сторожей в бригаде, если все сторожа вместе проспали 1001 человеко-ночь?
Страница: 1 2 3 >> [Всего задач: 14] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|