ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На шахматной доске 4×4 расположена фигура – "летучая ладья", которая ходит так же, как обычная ладья, но не может за один ход стать на поле, соседнее с предыдущим. Может ли она за 16 ходов обойти всю доску, становясь на каждое поле по разу, и вернуться на исходное поле? Решите ребус: БАО×БА×Б = 2002. Из точки M внутри треугольника опущены перпендикуляры на высоты. Оказалось, что отрезки высот от вершин до оснований этих перпендикуляров равны между собой. Докажите, что в этом случае они равны диаметру вписанной в треугольник окружности. Расставьте скобки так, чтобы получилось верное равенство:
1 - 2 . 3 + 4 + 5 . 6 . 7 + 8 . 9 = 1995.
|
Страница: 1 2 3 >> [Всего задач: 12]
Разрежьте изображённую на левом рисунке фигуру на две одинаковые части.
Прямоугольник составлен из шести квадратов (см. правый рисунок). Найдите сторону самого большого квадрата, если сторона самого маленького равна 1.
Расставьте скобки так, чтобы получилось верное равенство:
1 - 2 . 3 + 4 + 5 . 6 . 7 + 8 . 9 = 1995.
После того, как Наташа съела половину персиков из банки, уровень компота понизился на одну треть.
Натуральное число умножили последовательно на каждую из его цифр. Получилось 1995. Найдите исходное число.
Страница: 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке