Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Доказать, что каждое из чисел последовательности 11, 111, 1111, ... не является квадратом натурального числа.

Вниз   Решение


Докажите, что на графике функции  y = x³ можно отметить такую точку A, а на графике функции  y = x³ + |x| + 1  – такую точку B, что расстояние AB не превышает 1/100.

ВверхВниз   Решение


В возрастающей бесконечной последовательности натуральных чисел каждое число, начиная с 2002-го, является делителем суммы всех предыдущих чисел. Докажите, что в этой последовательности найдётся некоторое число, начиная с которого каждое число равно сумме всех предыдущих.

ВверхВниз   Решение


Режем на равные части. Разрежьте фигуру на равные части (на две одинаковые по форме, и по площади части).


ВверхВниз   Решение


В записи *1*2*4*8*16*32*64 = 27 вместо знаков ''*'' поставьте знаки ''+'' или ''-'' так, чтобы равенство стало верным.

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 103848

Тема:   [ Ребусы ]
Сложность: 2
Классы: 7,8

В записи *1*2*4*8*16*32*64 = 27 вместо знаков ''*'' поставьте знаки ''+'' или ''-'' так, чтобы равенство стало верным.

Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .