Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В треугольнике ABC известны стороны BC = a, AC = b, AB = c и площадь S. Биссектрисы BL и AK пересекаются в точке O. Найдите площадь четырёхугольника CKOL.

Вниз   Решение


Разрежьте квадрат 6×6 клеточек на трёхклеточные уголки (см. рис.) так, чтобы никакие два уголка не образовывали прямоугольник 2×3.

ВверхВниз   Решение


Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный.

ВверхВниз   Решение


Дома у Олега есть сейф, но кода он не знает. Бабушка рассказала Олегу, что код состоит из 7 цифр – двоек и троек, причем двоек больше, чем троек. А дедушка – что код делится и на 3, и на 4. Сможет ли Олег с первой попытки открыть сейф?

ВверхВниз   Решение


Сумма трёх чисел чётна. Каким — чётным или нечётным — будет их произведение?

Вверх   Решение

Задачи

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 391]      



Задача 103977

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7

Как вы считаете, какой — чётной или нечётной — будет сумма:
а) двух чётных чисел;
б) двух нечётных чисел;
в) чётного и нечётного чисел?
Ответ обоснуйте.
Прислать комментарий     Решение


Задача 103978

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7

Сумма трёх чисел чётна. Каким — чётным или нечётным — будет их произведение?
Прислать комментарий     Решение


Задача 103979

Темы:   [ Четность и нечетность ]
[ Инварианты ]
Сложность: 2
Классы: 6,7

Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10?
Прислать комментарий     Решение


Задача 103980

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7,8

Сможете ли вы найти шесть целых чисел, сумма и произведение которых являются нечётными числами? А двести?
Прислать комментарий     Решение


Задача 98709

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 5,6

Белоснежка вырезала из батиста большой квадрат и положила его в сундук. Пришел Первый Гном, достал квадрат, разрезал его на четыре квадрата и положил все четыре снова в сундук. Потом пришел Второй Гном, достал один из квадратов, разрезал его на четыре квадрата и положил все четыре снова в сундук. Потом пришел Третий Гном. И он достал один из квадратов, разрезал его на четыре квадрата и положил все четыре снова в сундук. То же самое проделали все остальные гномы. Сколько квадратов лежало в сундуке после того, как ушел Седьмой Гном?
Прислать комментарий     Решение


Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .