ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Кружки, факультативы, спецкурсы:
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Автор: Кноп К.А.

В треугольнике ABC взята такая точка O, что  ∠COA = ∠B + 60°,  ∠COB = ∠A + 60°, AOB = ∠C + 60°.  Докажите, что если из отрезков AO, BO и CO можно составить треугольник, то из высот треугольника ABC тоже можно составить треугольник и эти треугольники подобны.

Вниз   Решение


Пусть f(x) - некоторый многочлен, про который известно, что уравнение f(x)=x не имеет корней. Докажите, что тогда и уравнение f(f(x))=x не имеет корней.

ВверхВниз   Решение


Найдите 100-значное число без нулевых цифр, которое делится на сумму своих цифр.

ВверхВниз   Решение


Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10?

Вверх   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 644]      



Задача 103977

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7

Как вы считаете, какой — чётной или нечётной — будет сумма:
а) двух чётных чисел;
б) двух нечётных чисел;
в) чётного и нечётного чисел?
Ответ обоснуйте.
Прислать комментарий     Решение


Задача 103978

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7

Сумма трёх чисел чётна. Каким — чётным или нечётным — будет их произведение?
Прислать комментарий     Решение


Задача 103979

Темы:   [ Четность и нечетность ]
[ Инварианты ]
Сложность: 2
Классы: 6,7

Дядька Черномор написал на листке бумаги число 20 и отдал листок тридцати трём богатырям. Каждый богатырь (по очереди) либо прибавил к числу единицу, либо отнял единицу. Могло ли в результате получиться число 10?
Прислать комментарий     Решение


Задача 103980

Тема:   [ Четность и нечетность ]
Сложность: 2
Классы: 5,6,7,8

Сможете ли вы найти шесть целых чисел, сумма и произведение которых являются нечётными числами? А двести?
Прислать комментарий     Решение


Задача 104001

Тема:   [ Разные задачи на разрезания ]
Сложность: 2
Классы: 7,8

У Кая есть ледяная пластинка в форме "уголка" (см. рисунок). Снежная Королева потребовала от Кая разрезать ее на четыре равные части. Как ему это сделать?

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 644]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .