ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Для положительных чисел x, y, z выполнено равенство  x²/y + y²/z + z²/x = x²/z + y²/x + z²/y.  Докажите, что хотя бы два из чисел x, y, z равны между собой.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 105162

Темы:   [ Тождественные преобразования ]
[ Разложение на множители ]
[ Теорема Безу. Разложение на множители ]
Сложность: 3+
Классы: 9,10,11

Для положительных чисел x, y, z выполнено равенство  x²/y + y²/z + z²/x = x²/z + y²/x + z²/y.  Докажите, что хотя бы два из чисел x, y, z равны между собой.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .