|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Три трёхзначных простых числа, составляющие арифметическую прогрессию, записаны подряд. Все клетки квадратной таблицы 100×100 пронумерованы в некотором порядке числами от 1 до 10000. Петя закрашивает клетки по следующим правилам. Вначале он закрашивает k клеток по своему усмотрению. Далее каждым ходом Петя может закрасить одну еще не закрашенную клетку с номером a, если для неё выполнено хотя бы одно из двух условий: либо в одной строке с ней есть уже закрашенная клетка с номером меньшим, чем a; либо в одном столбце с ней есть уже закрашенная клетка с номером большим, чем a. При каком наименьшем k независимо от исходной нумерации Петя за несколько ходов сможет закрасить все клетки таблицы? Основание пирамиды Хеопса — квадрат, а её боковые грани — равные равнобедренные треугольники. Буратино лазил наверх и измерил угол грани при вершине. Получилось 100o. Может ли так быть? |
Страница: 1 [Всего задач: 1]
Страница: 1 [Всего задач: 1] |
|||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|