|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Вдоль дорожки между домиками Незнайки и Синеглазки росли в ряд цветы: 15 пионов и 15 тюльпанов вперемешку. Отправившись из дома в гости к Незнайке, Синеглазка поливала все цветы подряд. После 10-го тюльпана вода закончилась, и 10 цветов остались не политыми. Назавтра, отправившись из дома в гости к Синеглазке, Незнайка собирал для неё все цветы подряд. Сорвав 6-й тюльпан, он решил, что для букета достаточно. Сколько цветов осталось расти вдоль дорожки? Найти все пары целых чисел (x, y), удовлетворяющих уравнению x² = y² + 2y + 13. Отмечены четыре вершины квадрата. Отметьте ещё четыре точки так, чтобы на всех серединных перпендикулярах к отрезкам с концами в отмеченных точках лежало по две отмеченные точки. |
Страница: 1 2 >> [Всего задач: 7]
Найдите наибольшее четырёхзначное число, все цифры которого различны и которое делится на 2, 5, 9 и 11.
Ваня считает, что дроби "сокращают", зачёркивая одинаковые цифры в числителе и знаменателе. Серёжа заметил, что иногда Ваня получает верные равенства, например, 49/98 = 4/8. Найдите все правильные дроби с числителем и знаменателем, состоящими из двух ненулевых цифр, которые можно так "сократить".
Царь выделял на содержание писарского приказа 1000 рублей в год (все писари получали поровну). Царю посоветовали сократить численность писарей на 50%, а оставшимся писарям повысить жалование на 50%. На сколько изменятся при этом затраты царя на писарский приказ?
Расположите на плоскости как можно больше точек так, чтобы любые три точки не лежали на одной прямой и являлись вершинами равнобедренного треугольника.
Страница: 1 2 >> [Всего задач: 7] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|