ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Докажите, что точки, симметричные произвольной точке относительно середин сторон квадрата, являются вершинами некоторого квадрата.

Вниз   Решение


Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

Вверх   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 107846

Темы:   [ Делимость чисел. Общие свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 7,8,9

Можно ли найти восемь таких натуральных чисел, что ни одно из них не делится ни на какое другое, но квадрат любого из этих чисел делится на каждое из остальных?

Прислать комментарий     Решение

Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .