Версия для печати
Убрать все задачи
а) На столе лежат 5 одинаковых бумажных треугольников. Каждый разрешается сдвигать в любом направлении, не поворачивая. Верно ли, что всегда каждый из этих треугольников можно накрыть четырьмя другими?
б) На столе лежат 5 одинаковых равносторонних бумажных треугольников. Каждый разрешается сдвигать в любом направлении, не поворачивая. Докажите, что каждый из этих треугольников можно накрыть четырьмя другими.

Решение
В треугольнике $ABC$ проведены высоты $BB_1$, $CC_1$ и диаметр $AD$ описанной окружности. Прямые $BB_1$ и $DC_1$ пересекаются в точке $E$, а прямые $CC_1$ и $DB_1$ – в точке $F$. Докажите, что $\angle CAE=\angle BAF$.


Решение
A – вершина правильного звёздчатого пятиугольника. Ломаная
AA'BB'CC'DD'EE' является его внешним контуром. Прямые AB и DE
продолжены до пересечения в точке F. Докажите, что многоугольник
ABB'CC'DED' равновелик четырёхугольнику AD'EF.


Решение
Найдите объём правильной четырёхугольной пирамиды со стороной
основания
a боковым ребром
b .

Решение