ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дано число  H = 2·3·5·7·11·13·17·19·23·29·31·37  (произведение простых чисел). Пусть 1, 2, 3, 5, 6, 7, 10, 11, 13, 14, ..., H – все его делители, выписанные в порядке возрастания. Под рядом делителей выпишем ряд из единиц и минус единиц по следующему правилу: под единицей 1, под числом, которое разлагается на чётное число простых сомножителей, 1, и под числом, которое разлагается на нечётное число простых сомножителей, –1. Доказать, что сумма чисел полученного ряда равна 0.

Вниз   Решение


На доске написаны числа 1, 2, 3, ..., 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю?

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 8]      



Задача 30303  (#4.6)

Темы:   [ Четность и нечетность ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 3
Классы: 6,7

На доске написаны числа 1, 2, 3, ..., 1984, 1985. Разрешается стереть с доски любые два числа и вместо них записать модуль их разности. В конце концов на доске останется одно число. Может ли оно равняться нулю?

Прислать комментарий     Решение

Задача 89934  (#4.7)

Темы:   [ Разрезания (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Геометрия на клетчатой бумаге ]
Сложность: 2+
Классы: 5,6,7

В квадрате 4×4 нарисовано 15 точек Доказать, что из него можно вырезать квадратик 1×1, не содержащий внутри себя точек.
Прислать комментарий     Решение


Задача 89935  (#4.8)

Тема:   [ Математическая логика (прочее) ]
Сложность: 2+
Классы: 5,6,7

На Острове живут рыцари, всегда говорящие правду, и лжецы, всегда обманывающие. Какой вопрос вы задали бы жителю Острова, чтобы узнать, живет ли у него дома ручной крокодил?
Прислать комментарий     Решение


Страница: << 1 2 [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .