ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Диагональ BD трапеции ABCD равна m, а боковая сторона AD равна n. Найдите основание CD, если известно, что основание, диагональ и боковая сторона трапеции, выходящие из вершины C, равны между собой.
Один квадрат вписан в окружность, а другой квадрат описан около той же окружности так, что его вершины лежат на продолжениях сторон первого (см. рисунок). Найдите угол между сторонами этих квадратов. Сколько различных целочисленных решений имеет неравенство |x| + |y| < 100?
В треугольнике ABC перпендикуляр, проходящий через середину
стороны AC, пересекает сторону BC в точке M, а перпендикуляр,
проходящий через сторону BC пересекает сторону AC в точке N.
Прямая MN перпендикулярна AB и
MN =
Через вершину A остроугольного треугольника ABC проведена прямая, параллельная стороне BC, равной a, и пересекающая окружности, построенные на сторонах AB и AC как на диаметрах, в точках M и N, отличных от A. Найдите MN. Точка D – центр описанной окружности остроугольного треугольника ABC. Окружность, проходящая через точки A, B и D, пересекает стороны AC и BC в точках M и N соответственно. Докажите, что описанные окружности треугольников ABD и MNC равны. Из шахматной доски со стороной а) 2n; б) 6n + 1 выброшена
одна клетка. Докажите, что оставшуюся часть доски можно
замостить плитками, изображенными на рис.
Точка M лежит на стороне AB треугольника ABC, AM = a, BM = b, CM = c, c < a, c < b. Дан остроугольный треугольник $ABC$. Точка $P$ выбрана так, что $AP=AB$ и $PB \parallel AC$. Точка $Q$ выбрана так, что $AQ=AC$ и $CQ \parallel AB$. Отрезки $CP$ и $BQ$ пересекаются в точке $X$. Докажите, что центр описанной окружности треугольника $ABC$ лежит на окружности $(PXQ)$. а) Докажите, что p² – 1 делится на 24, если p – простое число и p > 3. |
Страница: 1 2 3 4 5 6 >> [Всего задач: 27]
а) Докажите, что p² – 1 делится на 24, если p – простое число и p > 3.
Докажите, что любое натуральное число, десятичная запись которого состоит из 3n одинаковых цифр, делится на 37.
Докажите, что число 11...1 (1986 единиц) имеет по крайней мере
Докажите, что числа а) 232001 + 1; б) 232001 – 1 – составные.
Докажите, что
Страница: 1 2 3 4 5 6 >> [Всего задач: 27]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке