Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Дана окружность и точка вне её; из этой точки мы совершаем путь по замкнутой ломаной, состоящей из отрезков прямых, касательных к окружности, и заканчиваем путь в начальной точке. Участки пути, по которым мы приближались к центру окружности, берём со знаком `` плюс'', а участки пути, по которым мы удалялись от центра, — со знаком `` минус''. Докажите, что для любого такого пути алгебраическая сумма длин участков пути, взятых с указанными знаками, равна нулю. (Эту задачу не решил никто из участников олимпиады.)

Вниз   Решение


  а) Выбраны 6 различных цветов; требуется раскрасить 6 граней куба, каждую в особый цвет из числа избранных. Сколькими геометрически различными способами можно это сделать? Геометрически различными называются две такие расцветки, которые нельзя совместить одну с другой при помощи вращений куба вокруг его центра.
  б) Решить ту же задачу для случая раскраски граней додекаэдра в 12 различных цветов.

ВверхВниз   Решение


Отметьте несколько точек и несколько прямых так, чтобы на каждой прямой лежало ровно три отмеченные точки и через каждую точку проходило ровно три отмеченные прямые.

ВверхВниз   Решение


Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т. д.).
Докажите, что центры обоих параллелограммов совпадают.

ВверхВниз   Решение


Определить наибольшее значение отношения трёхзначного числа к числу, равному сумме цифр этого числа.

ВверхВниз   Решение


Передние покрышки автомобиля "Антилопа Гну" выходят из строя через 25000 км, а задние – через 15000 км. Когда О. Бендер должен поменять их местами, чтобы машина прошла максимальное расстояние? Чему равно это расстояние?

Вверх   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 18]      



Задача 56462  (#11)

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Вершины параллелограмма A1B1C1D1 лежат на сторонах параллелограмма ABCD (точка A1 лежит на стороне AB, точка B1 – на стороне BC и т. д.).
Докажите, что центры обоих параллелограммов совпадают.

Прислать комментарий     Решение

Задача 32052  (#12)

Темы:   [ Классическая комбинаторика (прочее) ]
[ Процессы и операции ]
Сложность: 3-
Классы: 7,8,9,10

Было семь ящиков. В некоторые из них положили еще по семь ящиков (не вложенных друг в друга) и т. д. В итоге стало 10 непустых ящиков.
Сколько всего стало ящиков?

Прислать комментарий     Решение

Задача 32053  (#13)

Темы:   [ Текстовые задачи (прочее) ]
[ Средние величины ]
Сложность: 3
Классы: 7,8,9

Передние покрышки автомобиля "Антилопа Гну" выходят из строя через 25000 км, а задние – через 15000 км. Когда О. Бендер должен поменять их местами, чтобы машина прошла максимальное расстояние? Чему равно это расстояние?

Прислать комментарий     Решение

Задача 77999  (#14)

Темы:   [ Десятичная система счисления ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9

Определить наибольшее значение отношения трёхзначного числа к числу, равному сумме цифр этого числа.

Прислать комментарий     Решение

Задача 32055  (#15)

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Подсчет двумя способами ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

В классе каждый мальчик дружит ровно с двумя девочками, а каждая девочка — ровно с тремя мальчиками. Еще известно, что в классе 31 пионер и 19 парт. Сколько человек в этом классе?

Прислать комментарий     Решение

Страница: << 1 2 3 4 >> [Всего задач: 18]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .