ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из произвольной точки M внутри равностороннего треугольника опущены перпендикуляры MK1, MK2, MK3 на его стороны. Докажите, что

$\displaystyle \overrightarrow{MK_{1}} $ + $\displaystyle \overrightarrow{MK_{2}} $ + $\displaystyle \overrightarrow{MK_{3}} $ = $\displaystyle {\textstyle\frac{3}{2}}$ . $\displaystyle \overrightarrow{MO}$,

где O — центр треугольника.

   Решение

Задачи

Страница: 1 [Всего задач: 1]      



Задача 55380  (#М807а)

Темы:   [ Векторы ]
[ Правильный (равносторонний) треугольник ]
Сложность: 4
Классы: 8,9

Из произвольной точки M внутри равностороннего треугольника опущены перпендикуляры MK1, MK2, MK3 на его стороны. Докажите, что

$\displaystyle \overrightarrow{MK_{1}} $ + $\displaystyle \overrightarrow{MK_{2}} $ + $\displaystyle \overrightarrow{MK_{3}} $ = $\displaystyle {\textstyle\frac{3}{2}}$ . $\displaystyle \overrightarrow{MO}$,

где O — центр треугольника.

Прислать комментарий     Решение


Страница: 1 [Всего задач: 1]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .