|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В двух кошельках лежат две монеты, причём в одном кошельке монет вдвое больше, чем в другом. Как такое может быть?
В клетках квадратной таблицы n × n, где n > 1, требуется расставить различные целые числа от 1 до n2 так, чтобы каждые два последовательных числа оказались в соседних по стороне клетках, а каждые два числа, дающие одинаковые остатки при делении на n, – в разных строках и в разных столбцах. При каких n это возможно? Гидры состоят из голов и шей (каждая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить её на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более чем N ударов. На сторонах BC и CD квадрата ABCD взяты точки E и F так, что |
Страница: << 1 2 3 >> [Всего задач: 15]
а) DH = DK; б)
б) Из произвольной точки O вписанной окружности треугольника ABC опущены перпендикуляры OA', OB', OC' на стороны треугольника ABC и перпендикуляры OA'', OB'', OC'' на стороны треугольника с вершинами в точках касания. Докажите, что OA' . OB' . OC' = OA'' . OB'' . OC''.
Пятиугольник ABCDE вписан в окружность. Расстояния от точки A до прямых BC, CD и DE равны соответственно a, b и c.
Страница: << 1 2 3 >> [Всего задач: 15] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|