ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Докажите, что любая диагональ четырёхугольника меньше половины его периметра.
а) Докажите, что
S(A, B, C) = - S(B, A, C) = S(B, C, A).
Три бегуна A, B и C бегут по параллельным
дорожкам с постоянными скоростями. В начальный момент
площадь треугольника ABC равна 2, через 5 с равна 3.
Чему может быть она равна еще через 5 с?
Две окружности радиуса R пересекаются в точках M и N.
Пусть A и B — точки пересечения серединного перпендикуляра
к отрезку MN с этими окружностями, лежащие по одну
сторону от прямой MN. Докажите, что
MN2 + AB2 = 4R2.
|
Страница: 1 [Всего задач: 4]
Докажите, что при параллельном переносе окружность переходит в окружность.
Две окружности радиуса R касаются в точке K. На
одной из них взята точка A, на другой — точка B, причем
Две окружности радиуса R пересекаются в точках M и N.
Пусть A и B — точки пересечения серединного перпендикуляра
к отрезку MN с этими окружностями, лежащие по одну
сторону от прямой MN. Докажите, что
MN2 + AB2 = 4R2.
Внутри прямоугольника ABCD взята точка M. Докажите, что
существует выпуклый четырехугольник с перпендикулярными диагоналями
длины AB и BC, стороны которого равны AM, BM, CM, DM.
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке