Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 31 задача
Версия для печати
Убрать все задачи

Радиусы двух окружностей равны R и r, а расстояние между их центрами равно d. Докажите, что эти окружности пересекаются тогда и только тогда, когда  | R - r| < d < R + r.

Вниз   Решение


Докажите, что  SABCD $ \leq$ (AB . BC + AD . DC)/2.

ВверхВниз   Решение


Две окружности S1 и S2 с центрами O1 и O2 касаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке A1 и S2 в точке A2. Докажите, что  O1A1 || O2A2.

ВверхВниз   Решение


На отрезке длиной 1 дано n точек. Докажите, что сумма расстояний от некоторой точки отрезка до этих точек не меньше n/2.

ВверхВниз   Решение


Остроугольный треугольник расположен внутри окружности. Докажите, что ее радиус не меньше радиуса описанной окружности треугольника.
Верно ли это утверждение для тупоугольного треугольника?

ВверхВниз   Решение


В лесу растут деревья цилиндрической формы. Связисту нужно протянуть провод из точки A в точку B, расстояние между которыми равно l. Докажите, что для этой цели ему достаточно куска провода длиной 1, 6l.

ВверхВниз   Решение


Докажите тождество: 1 . 2 . 3 + 2 . 3 . 4 +...+ n(n + 1)(n + 2) = $\displaystyle {\textstyle\frac{1}{4}}$n(n + 1)(n + 2)(n + 3).

ВверхВниз   Решение


В выпуклом четырехугольнике ABCD равны стороны AB и CD и углы A и C. Обязательно ли этот четырехугольник параллелограмм?

ВверхВниз   Решение


На доске написаны 10 единиц и 10 двоек. За ход разрешается стереть две любые цифры и, если они были одинаковыми, написать двойку, а если разными – единицу. Если последняя оставшаяся на доске цифра – единица, то выиграл первый игрок, если двойка – то второй.

ВверхВниз   Решение


а) Диагонали AC и BE правильного пятиугольника ABCDE пересекаются в точке K. Докажите, что описанная окружность треугольника CKE касается прямой BC.
б) Пусть a — длина стороны правильного пятиугольника, d — длина его диагонали. Докажите, что  d2 = a2 + ad.

ВверхВниз   Решение


Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет?

ВверхВниз   Решение


Докажите, что правильный треугольник можно разрезать на n правильных треугольников для любого n, начиная с шести.

ВверхВниз   Решение


Докажите, что биссектрисы углов выпуклого четырехугольника образуют вписанный четырехугольник.

ВверхВниз   Решение


Докажите, что  SABC $ \leq$ AB . BC/2.

ВверхВниз   Решение


Окружности S1 и S2 касаются окружности S внутренним образом в точках A и B, причем одна из точек пересечения окружностей S1 и S2 лежит на отрезке AB. Докажите, что сумма радиусов окружностей S1 и S2 равна радиусу окружности S.

ВверхВниз   Решение


На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что хотя бы один из треугольников с вершинами в этих точках не является остроугольным.

ВверхВниз   Решение


Бумажный треугольник, один из углов которого равен α, разрезали на несколько треугольников. Могло ли случиться, что все углы всех полученных треугольников меньше α
  а) в случае, если  α = 70°;
  б) в случае, если  α = 80°?

ВверхВниз   Решение


В четырехугольнике ABCD стороны AB и CD равны, причем лучи AB и DC пересекаются в точке O. Докажите, что прямая, соединяющая середины диагоналей, перпендикулярна биссектрисе угла AOD.

ВверхВниз   Решение


Список упорядоченных в порядке возрастания длин сторон и диагоналей одного выпуклого четырехугольника совпадает с таким же списком для другого четырехугольника. Обязательно ли эти четырехугольники равны?

ВверхВниз   Решение


Автор: Фомин С.В.

На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.

ВверхВниз   Решение


Окружности S1 и S2 пересекаются в точке A. Через точку A проведена прямая, пересекающая S1 в точке BS2 в точке C. В точках C и B проведены касательные к окружностям, пересекающиеся в точке D. Докажите, что угол BDC не зависит от выбора прямой, проходящей через A.

ВверхВниз   Решение


Арена цирка освещается n различными прожекторами. Каждый прожектор освещает выпуклую фигуру. Известно, что если выключить любой прожектор, то арена будет по-прежнему полностью освещена, а если выключить любые два прожектора, то арена будет освещена не полностью. При каких n это возможно?

ВверхВниз   Решение


Докажите, что  $ \angle$ABC > 90o тогда и только тогда, когда точка B лежит внутри окружности с диаметром AC.

ВверхВниз   Решение


На плоскости дано бесконечное множество прямоугольников, вершины каждого из которых расположены в точках с координатами (0, 0), (0, m), (n, 0), (n, m), где n и m — целые положительные числа (свои для каждого прямоугольника). Докажите, что из этих прямоугольников можно выбрать два так, чтобы один содержался в другом.

ВверхВниз   Решение


Докажите, что в правильный пятиугольник можно так вписать квадрат, что его вершины будут лежать на четырёх сторонах пятиугольника.

ВверхВниз   Решение


Докажите, что квадрат можно разрезать на n квадратов для любого n, начиная с шести.

ВверхВниз   Решение


  а) Головоломка "Ханойская башня" представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трёх колышков. Требуется переместить всю башню на другой колышек, перенося каждый раз только один диск и не помещая больший диск на меньший. Докажите, что головоломка имеет решение. Какой способ будет оптимальным (по числу перекладываний дисков)?

  б) Занумеруем колышки числами 1, 2, 3. Требуется переместить диски с 1-го колышка на 3-й. Сколько понадобится перекладываний, если прямое перемещение диска с 1-го колышка на 3-й и с 3-го на 1-й запрещено (каждое перекладывание должно производиться через 2-й колышек)?

  в) Сколько понадобится перекладываний, если в условии пункта а) добавить дополнительное требование: первый (самый маленький) диск нельзя класть на 2-й колышек?

ВверхВниз   Решение


Докажите тождество: 12 + 22 +...+ n2 = $\displaystyle {\textstyle\frac{1}{6}}$n(n + 1)(2n + 1).

ВверхВниз   Решение


Числа от 1 до 20 выписаны в строчку. Игроки по очереди расставляют между ними плюсы и минусы. После того, как все места заполнены, подсчитывается результат. Если он чётен, то выигрывает первый игрок, если нечётен, то второй. Кто выиграет?

ВверхВниз   Решение


Докажите тождество: 13 + 23 +...+ n3 = (1 + 2 +...+ n)2.

ВверхВниз   Решение


   а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину?

   б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец?

Вверх   Решение

Задачи

Страница: 1 2 3 4 >> [Всего задач: 19]      



Задача 60314  (#01.041)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция (прочее) ]
Сложность: 3
Классы: 8,9

Из квадрата клетчатой бумаги размером 16×16 вырезали одну клетку. Докажите, что полученную фигуру можно разрезать на "уголки'' из трех клеток.

Прислать комментарий     Решение

Задача 60315  (#1.42, 1.43, 1.44)

 [Ханойская башня I]
Темы:   [ Индукция (прочее) ]
[ Классическая комбинаторика (прочее) ]
[ Рекуррентные соотношения ]
Сложность: 3+
Классы: 8,9,10

  а) Головоломка "Ханойская башня" представляет собой восемь дисков, нанизанных в порядке уменьшения размеров на один из трёх колышков. Требуется переместить всю башню на другой колышек, перенося каждый раз только один диск и не помещая больший диск на меньший. Докажите, что головоломка имеет решение. Какой способ будет оптимальным (по числу перекладываний дисков)?

  б) Занумеруем колышки числами 1, 2, 3. Требуется переместить диски с 1-го колышка на 3-й. Сколько понадобится перекладываний, если прямое перемещение диска с 1-го колышка на 3-й и с 3-го на 1-й запрещено (каждое перекладывание должно производиться через 2-й колышек)?

  в) Сколько понадобится перекладываний, если в условии пункта а) добавить дополнительное требование: первый (самый маленький) диск нельзя класть на 2-й колышек?

Прислать комментарий     Решение

Задача 60318  (#01.045)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
Сложность: 3
Классы: 8,9,10

Докажите, что квадрат можно разрезать на n квадратов для любого n, начиная с шести.

Прислать комментарий     Решение

Задача 60319  (#01.046)

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
Сложность: 3
Классы: 8,9,10

Докажите, что правильный треугольник можно разрезать на n правильных треугольников для любого n, начиная с шести.

Прислать комментарий     Решение

Задача 60320  (#01.047)

 [Золотая цепочка]
Темы:   [ Геометрическая прогрессия ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3
Классы: 9,10

   а) На постоялом дворе остановился путешественник, и хозяин согласился в качестве уплаты за проживание брать кольца золотой цепочки, которую тот носил на руке. Но при этом он поставил условие, чтобы оплата была ежедневной: каждый день хозяин должен был иметь на одно кольцо больше, чем в предыдущий. Замкнутая в кольцо цепочка содержала 11 колец, а путешественник собирался прожить ровно 11 дней, поэтому он согласился. Какое наименьшее число колец он должен распилить, чтобы иметь возможность платить хозяину?

   б) Из скольких колец должна состоять цепочка, чтобы путешественник мог прожить на постоялом дворе наибольшее число дней при условии, что он может распилить только n колец?

Прислать комментарий     Решение

Страница: 1 2 3 4 >> [Всего задач: 19]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .