|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Занятия:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан треугольник ABC, в котором AB > BC. Касательная к его описанной окружности в точке B пересекает прямую AC в точке P. Точка D симметрична точке B относительно точки P, а точка E симметрична точке C относительно прямой BP. Докажите, что четырёхугольник ABED – вписанный. Докажите, что если аффинное преобразование переводит некоторую окружность в себя, то оно является либо поворотом, либо симметрией. Докажите, что треугольник ABC остроугольный тогда и только тогда, когда длины его проекций на три различных направления равны. Пусть m и n – целые числа. Докажите, что mn(m + n) – чётное число. |
Страница: 1 2 3 4 >> [Всего задач: 18]
Докажите, что уравнение 3x² + 2 = y² нельзя решить в целых числах.
Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?
Пусть m и n – целые числа. Докажите, что mn(m + n) – чётное число.
Так он делает 25 раз. Могут ли после этого шайбы оказаться на исходных местах?
Жители города Глупова пользуются купюрами только в 35 и 80 тыров. Сможет ли рассчитаться продавец с покупателем, который хочет купить
Страница: 1 2 3 4 >> [Всего задач: 18] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|