|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что если (m, 30) = 1, то число, состоящее из цифр периода дроби 1/m, делится на 9. Назовём точку внутри треугольника хорошей, если три проходящие через неё чевианы равны. В треугольнике ABC стороны AB и BC равны, а количество хороших точек нечётно. Чему оно может быть равно? Офеня купил на оптовом рынке партию ручек и предлагает покупателям либо одну ручку за 5 рублей, либо три ручки за 10 рублей. От каждого покупателя Офеня получает одинаковую прибыль. Какова оптовая цена ручки? На Луне имеют хождение монеты достоинством в 1, 15 и 50 фертингов. Незнайка отдал за покупку несколько монет и получил сдачу – на одну монету больше. Какова наименьшая возможная цена покупки? На лотерейном билете требуется отметить 8 клеточек из 64. Какова вероятность того, что после розыгрыша, в котором также будет выбрано 8 каких-то клеток из 64 (все такие возможности равновероятны), окажется, что угаданы Докажите, что составное число n всегда имеет делитель, больший 1, но не больший На столе лежат в ряд пять монет: средняя – орлом вверх, а остальные – решкой вверх. За одну операцию разрешается одновременно перевернуть ровно три монеты, лежащие рядом. Можно ли, выполнив такую операцию несколько раз, добиться того, чтобы все пять монет лежали орлом вверх? В лесу растет миллион елок. Известно, что на каждой из них не более 600000 иголок. Докажите, что в лесу найдутся две елки с одинаковым числом иголок. Пусть (n, 10) = 1, m < n, (m, n) = 1, и t – наименьшее число, при котором 10t – 1 делится на n. |
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 85]
Докажите, что если (m, 10) = 1, то у десятичного представления дроби 1/m нет предпериода.
Найдите возможные значения знаменателя обычной дроби вида 1/m, которая представляется чисто периодической десятичной дробью с двумя цифрами в периоде.
Пусть (n, 10) = 1, m < n, (m, n) = 1, и t – наименьшее число, при котором 10t – 1 делится на n.
Репьюнитами называются числа
Докажите, что если (m, 30) = 1, то число, состоящее из цифр периода дроби 1/m, делится на 9.
Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 85] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|