Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Много лет каждый день в полдень из Гавра в Нью-Йорк отправляется почтовый пароход и в то же время из Нью-Йорка отходит идущий в Гавр пароход той же компании. Каждый из этих пароходов находится в пути ровно семь суток, и идут они по одному и тому же пути.
Сколько пароходов своей компании встретит на своём пути пароход, идущий из Гавра в Нью-Йорк?

Вниз   Решение


Существуют ли шесть таких последовательных натуральных чисел, что наименьшее общее кратное первых трёх из них больше, чем наименьшее общее кратное трёх следующих?

ВверхВниз   Решение


Как на комплексной плоскости определить показательную функцию az?

Вверх   Решение

Задачи

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 83]      



Задача 61120  (#07.056)

Тема:   [ Комплексная экспонента ]
Сложность: 4
Классы: 10,11

Как на комплексной плоскости определить показательную функцию az?

Прислать комментарий     Решение

Задача 61121  (#07.057)

Тема:   [ Комплексная экспонента ]
Сложность: 4
Классы: 10,11

Придайте смысл равенству   = (–1)1/i ≈ 231/7.

Прислать комментарий     Решение

Задача 61122  (#07.058)

Темы:   [ Тригонометрическая форма. Формула Муавра ]
[ Геометрическая прогрессия ]
Сложность: 4-
Классы: 10,11

Пусть  z = ei/n = cos /n + i sin /n.  Для произвольного целого a вычислите суммы
  а)  1 + za + z2a + ... + z(n–1)a;
  б)  1 + 2za + 3z2a + ... + nz(n–1)a.

Прислать комментарий     Решение

Задача 61123  (#07.059)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4
Классы: 9,10,11

а) Докажите равенство:   cos φ + ... + cos nφ = ;
б) Вычислите сумму:   sinφ + ... + sin nφ.

Прислать комментарий     Решение

Задача 61124  (#07.060)

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Комплексные числа помогают решить задачу ]
Сложность: 4-
Классы: 10,11

Докажите равенство:   = tg nα.

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 83]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .