ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть характеристическое уравнение ( 11.3) последовательности {an} имеет два различных корня x1 и x2. Докажите, что при фиксированных a0, a1 существует ровно одна пара чисел c1, c2 такая, что
an = c1x1n + c2x2n (n = 0, 1, 2,...).
Решение Найдите формулу n-го члена для последовательностей, заданных условиями ( n 0):
Решение |
Страница: 1 2 3 4 5 6 >> [Всего задач: 29]
называется линейной рекуррентной (возвратной) последовательностью второго порядка. Уравнение
называется характеристическим уравнением последовательности (a n). Докажите, что если числа a0, a1 фиксированы, то все остальные члены последовательности {an} определяются однозначно.
an = c1x1n + c2x2n (n = 0, 1, 2,...).
an = (c1 + c2n)x0n (n = 0, 1, 2,...).
Страница: 1 2 3 4 5 6 >> [Всего задач: 29] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|