|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Внутри угла AOB взята точка C, опущены перпендикуляры CD на сторону OA и CE на сторону OB. Затем опущены перпендикуляры EM на сторону OA и DN на сторону OB. Доказать, что OC ⊥ MN. Докажите, что медианы треугольника пересекаются в одной точке и делятся ею в отношении 2:1, считая от вершины треугольника.
"Компоненты связности" В неориентированном графе посчитать количество компонент связности. В графе могут быть петли и кратные ребра. Входные данные. Во входном файле INPUT.TXT записаны сначала два числа N и M, задающие соответственно количество вершин и количество ребер (1<=N<=100, 0<=M<=10000), а затем перечисляются ребра. Каждое ребро задается номерами вершин, которые оно соединяет. Выходные данные. В выходной файл OUTPUT.TXT выведите одно число - количество компонент связности. Пример входного файла 3 4 1 1 1 2 1 3 2 3 Пример выходного файла 1 Пример входного файла 5 3 1 1 1 2 2 1 Пример выходного файла 4 Пример входного файла 5 0 Пример выходного файла 5 |
Страница: << 7 8 9 10 11 12 13 [Всего задач: 63]
Путь В неориентированном графе требуется найти минимальный путь между двумя вершинами. Входные данные Во входном файле записано сначала число N - количество вершин в графе (1<=N<=100). Затем записана матрица смежности (0 обозначает отсутствие ребра, 1 - наличие ребра). Затем записаны номера двух вершин - начальной и конечной. Выходные данные В выходной файл выведите сначала L - длину пути (количество ребер, которые нужно пройти). А затем выведите L+1 число - вершины в порядке следования вдоль этого пути. Если пути не существует, выведите одно число -1. Пример входного файла 5 0 1 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 3 5 Пример выходного файла 3 3 2 1 5
Числа в вершинах В неориентированном графе без кратных ребер и петель расставить в вершинах числа так, чтобы если вершины соединены ребром, то числа имели общий делитель, а если нет - то нет. Входные данные. В файле INPUT.TXT записано число N (0<N<7) - количество вершин в графе. Затем записана матрица смежности. Выходные данные. В файл OUTPUT.TXT вывести N натуральных чисел из диапазона Longint, которые вы предлагаете приписать вершинам. Пример файла INPUT.TXT 3 0 1 1 1 0 0 1 0 0 Пример файла OUTPUT.TXT 6 2 3
"Компоненты связности" В неориентированном графе посчитать количество компонент связности. В графе могут быть петли и кратные ребра. Входные данные. Во входном файле INPUT.TXT записаны сначала два числа N и M, задающие соответственно количество вершин и количество ребер (1<=N<=100, 0<=M<=10000), а затем перечисляются ребра. Каждое ребро задается номерами вершин, которые оно соединяет. Выходные данные. В выходной файл OUTPUT.TXT выведите одно число - количество компонент связности. Пример входного файла 3 4 1 1 1 2 1 3 2 3 Пример выходного файла 1 Пример входного файла 5 3 1 1 1 2 2 1 Пример выходного файла 4 Пример входного файла 5 0 Пример выходного файла 5
Страница: << 7 8 9 10 11 12 13 [Всего задач: 63] |
||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|