ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Задача 78156
Темы:    [ Угол между касательной и хордой ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
Сложность: 3+
Классы: 9,10
В корзину
Прислать комментарий

Условие

Внутри угла AOB взята точка C, опущены перпендикуляры CD на сторону OA и CE на сторону OB. Затем опущены перпендикуляры EM на сторону OA и DN на сторону OB. Доказать, что  OCMN.


Решение

В треугольнике ODE точки M и N – основания высот, OC – диаметр описанной окружности. Поэтому утверждение следует из задачи 56510 б).

Источники и прецеденты использования

олимпиада
Название Московская математическая олимпиада
год
Номер 21
Год 1958
вариант
Класс 8
Тур 2
задача
Номер 3

© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .