Страница: 1 [Всего задач: 5]
Задача
78154
(#1)
|
|
Сложность: 3 Классы: 9,10
|
Из бумаги вырезан многоугольник. Две точки его границы соединяются отрезком,
по которому многоугольник складывается. Доказать, что периметр многоугольника,
получающегося после складывания, меньше периметра исходного многоугольника.
Задача
78155
(#2)
|
|
Сложность: 3 Классы: 9,10
|
Для любых чисел a1 и a2, удовлетворяющих условиям a1 ≥ 0, a2 ≥ 0, a1 + a2 = 1, можно найти такие числа b1 и b2, что b1 ≥ 0, b2 ≥ 0, b1 + b2 = 1,
(5/4 – a1)b1 + 3(5/4 – a2)b2 > 1. Доказать.
Задача
78156
(#3)
|
|
Сложность: 3+ Классы: 9,10
|
Внутри угла AOB взята точка C, опущены перпендикуляры CD на сторону OA и CE на сторону OB. Затем опущены перпендикуляры EM на сторону OA и DN на сторону OB. Доказать, что OC ⊥ MN.
Задача
78157
(#4)
|
|
Сложность: 2+ Классы: 8,9,10
|
Доказать, что если целое n > 1, то
11·2²·3³·...·nn < nn(n+1)/2.
Задача
78158
(#5)
|
|
Сложность: 4- Классы: 9,10
|
Обозначим через
a наибольшее число непересекающихся кругов диаметра 1,
центры которых лежат внутри многоугольника
M, через
b — наименьшее
число кругов радиуса 1, которыми можно покрыть весь многоугольник
M.
Какое число больше:
a или
b?
Страница: 1 [Всего задач: 5]